ЛФМ Утеплення Вікна та двері Технології Техніка | Ринок Аналітика Новини компаній



Вівторок, 07 серпня 2018 14:20

Тепловой насос: история, принципы работы, плюсы и минусы

В данном материале ProfiDom.com.ua расскажет об истории создания теплового насоса; как он устроен и работает, какие бывают виды тепловых насосов, а также – о достоинствах и недостатках их использования при обогреве домов.    

Одном из самых распространенных энергоносителей для обогрева частных ломов, до недавнего времени, был природный газ, далее по списку – печи различных типов, электрообогреватели и т.д. Каждую зиму в печах сжигаются тысячи тонн древесины, угля, нефтепродуктов, расходуются мегаватты электроэнергии на астрономические суммы, возрастающие с каждым годом, и кажется, что другого выхода просто нет.

Между тем, один постоянный источник тепловой энергии всегда находится рядом с нашими домами, однако, заметить его в этом качестве населению Земли довольно сложно. А что, если использовать для отопления домов тепло нашей планеты? И подходящее устройство для этого имеется — геотермальный тепловой насос.

История появления теплового насоса

Теоретическое обоснование работы таких устройств в 1824 году привёл французский физик Сади Карно, опубликовав свою единственную работу о паровых машинах, в которой был описан термодинамический цикл, спустя 10 лет математически и графически подтверждённый физиком Бенуа Клайпероном и получивший название «цикл Карно».

Первая лабораторная модель теплового насоса была создана английским физиком Уильямом Томсоном, лордом Кельвином в 1852 году, во время проводимых им опытов по термодинамике. Кстати, своё название тепловой насос получил именно от лорда Кельвина.

Тепловой насос: история, принципы работы, плюсы и минусы

Уильям Томсон, барон Кельвин

Промышленная модель теплового насоса была построена в 1856 году австрийским горным инженером Петером фон Риттингером, использовавшим это устройство для испарения рассола и осушения солончаков с целью добычи сухой соли.

Тепловой насос: история, принципы работы, плюсы и минусы

Петер Риттер фон Риттингер

Однако, своим применением в отоплении домов тепловой насос обязан американскому изобретателю Роберту Уэбберу, экспериментировавшему в конце 40-х годов прошлого века с морозильной камерой. Роберт обратил внимание, что выходящая из морозильной установки труба горячая и решил использовать это тепло на бытовые нужды, удлинив трубу и пропустив через бойлер с водой.

Идея изобретателя оказалась успешной — с этого момента горячей воды у домочадцев было в избытке, но часть тепла, при этом, расходовалась бесцельно, уходя в атмосферу. Уэббер не мог с этим смириться и добавил к выводу из морозильника змеевик, рядом с которым поставил вентилятор, получив в результате установку для воздушного отопления дома.

Спустя некоторое время, изобретательный американец догадался, что можно добывать тепло в буквальном смысле из земли под его ногами и зарыл на некоторую глубину систему медных труб, с циркулировавшим по ним фреоном. Газ собирал тепло в земле, доставлял в дом и отдавал его, а после возвращался обратно в подземный теплосборник. Тепловой насос, созданный Уэббером, оказался настолько эффективным, что тот полностью перевёл отопление дома на эту установку, отказавшись от традиционных отопительных приборов и энергоносителей.

Тепловой насос, изобретённый Робертом Уэббером, долгие годы считался, скорее, нелепицей, чем действительно эффективным источником тепловой энергии — нефтяные энергоносители были в избытке, по вполне приемлемым ценам. Рост интереса к возобновляемым источникам тепла возник в начале 70-х, благодаря нефтяному эмбарго 1973 года, в ходе которого страны Персидского залива единодушно отказались поставлять нефть в США и Европу.

Дефицит нефтепродуктов вызвал резкий скачок цен на энергоносители — срочно понадобился выход из ситуации. Несмотря на последующую отмену эмбарго в 1975 году и восстановление поставок нефти, европейские и американские производители вплотную занялись разработками собственных моделей геотермальных тепловых насосов, установившийся спрос на которые с тех пор только растёт.

Устройство и принцип действия теплового насоса

По мере погружения в земную кору, толщина которой составляет на суше около 50–80 км, повышается её температура — это связано с близостью верхнего слоя магмы, температура которого примерно равна 1300 °С. На глубине от 3 метров температура грунта в любое время года положительная, с каждым километром глубины она повышается в среднем на 3–10 °С.

Рост температуры грунта с его глубиной, зависит не только от климатической зоны, но и от геологии грунтов, а также эндогенной активности в данном районе Земли. К примеру, в южной части африканского континента рост температуры на километр глубины грунта составляет 8 °С, а в штате Орегон (США), на территории которого отмечена достаточно высокая эндогенная активность — 150 °С на каждый километр глубины.

Однако, для эффективной работы теплового насоса подводящий к нему тепло внешний контур, вовсе, не нужно зарывать на сотни метров под землю — источником тепловой энергии может быть любая среда, имеющая температуру больше 0 °С.

Тепловой насос осуществляет перенос тепловой энергии из воздуха, воды или грунта, повышая в процессе переноса температуру до необходимой за счёт компрессии (сжатия) хладагента. Существует два основных типа тепловых насосов — компрессионные и сорбционные.

Тепловой насос: история, принципы работы, плюсы и минусы

Принципиальное устройство компрессионного теплового насоса: 1 — земля; 2 — циркуляция рассола; 3 — циркуляционный насос; 4 — испаритель; 5 — компрессор; 6 — конденсатор; 7 — система отопления; 8 — хладагент; 9 — дроссель

Несмотря на сбивающее с толку название, компрессионные тепловые насосы относятся не к отопительным, а к холодильным устройствам, поскольку работают по тому же принципу, что и любые холодильники или кондиционеры. Отличие теплового насоса от хорошо известных нам холодильных установок в том, что для его работы требуется, как правило, два контура — внутренний, в котором циркулирует хладагент, и внешний, с циркуляцией теплоносителя.

В процессе работы этого устройства хладагент внутреннего контура проходит следующие этапы:

  • охлаждённый хладагент в жидком состоянии поступает по контуру через отверстие капилляра в испаритель. Под влиянием быстрого понижения давления хладагент испаряется и переходит в газообразное состояние. Двигаясь по изогнутым трубкам испарителя и контактируя в процессе движения с газообразным или жидким теплоносителем, хладагент получает от него низкотемпературную тепловую энергию, после чего поступает в компрессор;
  • в камере компрессора хладагент сжимается, при этом резко возрастает его давление, что вызывает повышение температуры хладагента;
  • из компрессора горячий хладагент следует по контуру в змеевик конденсатора, выступающий в роли теплообменника — здесь хладагент отдаёт тепло (порядка 80–130 °С) теплоносителю, циркулирующему в отопительном контуре дома. Утратив большую часть тепловой энергии, хладагент возвращается в жидкое состояние;
  • при прохождении через расширительный клапан (капилляр) — он расположен во внутреннем контуре теплового насоса, следующим после теплообменника — остаточное давление в хладагенте снижается, после чего тот поступает в испаритель. С этого момента рабочий цикл повторяется вновь.

Тепловой насос: история, принципы работы, плюсы и минусы

Принцип работы воздушного теплового насоса

Таким образом, внутреннее устройство теплового насоса состоит из капилляра (расширительного клапана), испарителя, компрессора и конденсатора. Работой компрессора управляет электронный терморегулятор, прекращающий подачу электропитания к компрессору и останавливающий тем самым процесс выработки тепла при достижении заданной температуры воздуха в доме. При снижении температуры ниже определённого уровня, терморегулятор в автоматическом режиме включает компрессор.

В качестве хладагента во внутреннем контуре теплового насоса циркулируют фреоны R-134а или R-600а — первый на основе тетрафторэтана, второй на основе изобутана. Оба данных хладагента — безопасны для озонового слоя Земли и экологически чисты. Компрессионные тепловые насосы могут иметь привод от электромотора или от двигателя внутреннего сгорания.

В сорбционных тепловых насосах используется абсорбция — физико-химический процесс, в ходе которого газ или жидкость увеличиваются в объёме за счёт другой жидкости под воздействием температуры и давления.

Тепловой насос: история, принципы работы, плюсы и минусы

Принципиальная схема абсорбционного теплового насоса: 1 — нагреваемая вода; 2 — охлаждаемая вода; 3 — греющий пар; 4 — нагретая вода; 5 — испаритель; 6 — генератор; 7 — конденсатор; 8 — неконденсирующиеся газы; 9 — вакуумный насос; 10 — конденсат греющего пара; 11 — растворный теплообменник; 12 — газоотделитель; 13 — абсорбер; 14 — растворный насос; 15 — насос хладагента

Абсорбционные тепловые насосы оборудованы термическим компрессором, работающим на природном газе. В их контуре находится хладагент (обычно аммиак), испаряющийся при низкой температуре и давлении, поглощая при этом тепловую энергию из среды, окружающей циркуляционный контур. В парообразном состоянии хладагент поступает в теплообменник-абсорбер, где, в присутствии растворителя (как правило, воды), подвергается абсорбции и передаче теплоты растворителю. Подача растворителя производится при помощи термосифона, обеспечивающего циркуляцию за счёт разницы давлений между хладагентом и растворителем, или насоса с низким энергопотреблением в установках большой мощности.

В результате соединения хладагента и растворителя, температура кипения которых различна, тепло, доставленное хладагентом, вызывает испарение их обоих. Хладагент в парообразном состоянии, имеющий высокую температуру и давление, поступает по контуру в конденсатор, переходит в жидкое состояние и отдаёт тепло теплообменнику отопительной сети. После прохождения через расширительный клапан, хладагент переходит в исходное термодинамическое состояние, аналогичным образом возвращается в исходное состояние растворитель.

Преимущества абсорбционных тепловых насосов — в возможности работы от любого источника тепловой энергии и полном отсутствии движущихся элементов, т. е. бесшумности. Недостатки — меньшая мощность, по сравнению с компрессионными агрегатами, высокая стоимость, объясняющаяся сложностью конструкции и потребностью в использовании устойчивых к коррозии материалов, сложно поддающихся обработке.

Тепловой насос: история, принципы работы, плюсы и минусы

В адсорбционных тепловых насосах используются твёрдые материалы, как силикагель, активированный уголь или цеолит. В ходе первого рабочего этапа, называемого фазой десорбции, к камере теплообменника, покрытой изнутри сорбентом, подводится тепловая энергия, к примеру, от газовой горелки. Нагрев вызывает парообразование хладагента (воды), полученный пар доставляется ко второму теплообменнику, в первой фазе отдающему полученное при конденсации пара тепло в отопительную систему. Полное осушение сорбента и завершение конденсации воды во втором теплообменнике завершает первый этап работы — подача тепловой энергии в камеру первого теплообменника прекращается.

На втором этапе теплообменник с конденсированной водой становится испарителем, доставляя хладагенту тепловую энергию из внешней среды. В результате соотношения давлений, достигающего 0,6 кПа, при контакте тепла из внешней среды хладагент выпаривается — водяной пар поступает обратно в первый теплообменник, где адсорбируется в сорбент. Тепло, которое отдаёт пар в процессе адсорбции, передаётся системе отопления, после чего цикл повторяется. Следует отметить, что адсорбционные тепловые насосы для использования в бытовых целях не подходят — предназначены лишь для зданий большой площади (от 400 кв.м), менее мощные модели находятся всё ещё в стадии разработки.

(Окончание следует)

Прочитано 2541 разів

Підпишіться на новини будівництва:

 

 

Вибір редакції: