ЛФМ Утеплення Вікна та двері Технології Техніка | Ринок Аналітика Новини компаній



Вівторок, 26 квітня 2016 13:20

Как строили Чернобыльский саркофаг

Одна из важнейших задач, которые возникли при ликвидации последствий чернобыльской аварии, - безопасное и долговременное захоронение ядерного топлива, оставшегося в развалинах 4-го блока. 

В 1990-м году, еще до развала СССР, доктор физико-математических наук Александр Александрович Боровой, заместитель по науке начальника Комплексной экспедиции при Институте атомной энергии им. И.В. Курчатова в г. Чернобыле, рассказал подробности, которые тогда еще считались секретными.

«Чтобы локализовать это топливо и защитить окружающую территорию от проникающей радиации, построено сооружение, которое в технической литературе называют «Укрытием 4-го блока ЧАЭС», а в прессе - «Саркофагом». Его строительство завершено в ноябре 1986 г. Этим был сделан принципиальный, но, к сожалению, неокончательный шаг на пути к решению проблемы захоронения топлива.

Создание новых барьеров безопасности

При аварии все барьеры безопасности, предусмотренные создателями реактора, были сразу же разрушены взрывом, поэтому требовалось в кратчайший срок возвести новые преграды для ядерной, радиационной и тепловой опасности. Как это делалось, хорошо известно: в шахту реактора сбрасывали различные материалы. Часть из них (поглощающие нейтроны соединения бора) должна была обеспечить ядерную безопасность, другая (доломит, песок, глина) – создать фильтрующий слой и уменьшить выброс активности, третья - (свинец) – поглотить выделяющееся тепло. Всего, было сброшено почти 5 тыс. тонн материалов.

Жаркие споры о необходимости такого мероприятия и о его последствиях шли и до, и после его осуществления. Особенно острой критике подвергалось решение об использовании свинца, который, плавясь и испаряясь, мог дополнительно загрязнить окружающую среду. И только три года спустя, после большого комплекса разведывательных работ, стало ясно, что спорить не о чем: в саму шахту реактора если и попала, то лишь малая доля сброшенных материалов, основная их часть образовала холмы высотой до 15 м в центральном зале. Не удалось также перекрыть все пути выхода воздуха из шахты, т.е. создать полноценный фильтрующий слой. Причина - неблагоприятная геометрия разрушений.

В первые недели проводились и другие защитные мероприятия, например, под шахту реактора для охлаждения активной зоны и снижения концентрации кислорода подавался жидкий азот.

Весьма опасным представлялся «китайский синдром», для предотвращения которого под фундаментом здания соорудили теплообменник. И хотя летом 1988 г. при бурении скважин обнаружили, что «синдром» не смог развиться до опасных пределов, можно утверждать, что при том объеме данных о состоянии блока, который мы имели в мае 1986 г., было принято верное решение. Готовы ли мы вообще ответить на вопросы об эффективности мероприятий, проводившихся в то время? В частности, соизмеримы ли были результаты с затратами? (Я имею в виду не только материальные затраты, но и увеличение коллективной дозы, полученной работавшими.) Думаю, еще не готовы. Однозначного сценария хода аварии пока нет, поэтому откладывается и полный анализ эффективности принятых мер. Тем более нельзя было требовать такого анализа в апреле и мае 1986 г.

Как создавали Саркофаг

Наступление на разрушенный блок началось сразу же после аварии.

Во-первых, велась дезактивация прилегающей территории, разбросанные взрывом радиоактивные обломки и грунт из наиболее загрязненных мест собирались в контейнеры. Использовалась самая разная строительно-дорожная техника, в том числе изготовленная в Польше, Финляндии, ФРГ, Японии. Место водителя защищалось свинцом, а воздух поступал через фильтры. Некоторые машины были оборудованы аппаратурой теленаблюдения. Контейнеры позднее помещали в разрушенный блок или вывозили в места захоронения - «могильники».

Во-вторых, после предварительной очистки территорию вокруг блока покрыли слоем щебня, песка и бетона толщиной до 1,5 м.

Пока делались эти первые шаги, конструкторы разрабатывали варианты Саркофага. Никто еще не решал задачи такой сложности и масштабов, к тому же без достоверной информации о состоянии топлива внутри блока и степени разрушения строительных конструкций - проектирование и строительство пришлось вести одновременно с получением такой информации. Понадобилось проработать 18 вариантов проекта, чтобы выбрать из них окончательный. И все же Саркофаг спроектировали за месяц.

Строительство начали с создания стен, отделяющих 4-й блок от 3-го. Чтобы закрыть радиоактивные обломки с северной стороны блока, возвели стену, поднимающуюся гигантскими 12-метровыми уступами. Каждый следующий уступ строили под прикрытием предыдущего. Западная сторона Саркофага (контрфорсная) собрана из металлических секций общей массой почти в 1000 т. Для перекрытия на высоте 60 м установили 165-тонную стальную раму, на которую уложили 27 труб большого диаметра. Боковые скаты собрали из огромных стальных конструкций - «клюшек». Наконец, все это накрыли металлической кровлей. Строительство завершилось в ноябре 1986 г.

При строительстве немало бетона протекло в разрушенное здание, затруднив или сделав невозможным проход во многие помещения. С другой стороны, то, что большую часть топлива покрыл слой «свежего» бетона, значительно улучшило радиационную обстановку и облегчило разведку других помещений.

Разведка при сооружении Саркофага

Пока строился Саркофаг, внутри и вне аварийного блока велись разведывательные и диагностические работы. Для визуальных наблюдений, фото- и телесъемок, измерения радиационных полей, отбора проб аэрозолей использовались вертолеты. Они же доставляли в развал диагностические приборы. Такие работы требовали большой изобретательности, хорошей подготовки и мужества. Но не менее нужными были эти качества для разведки внутри блока. Вопреки оптимистическим заметкам журналистов, не нашлось ни отечественных, ни зарубежных роботов, способных вести разведку среди развалин, в огромных радиационных полях. Если роботы не ломались на старте, они застревали в самых неподходящих местах или вообще отказывались «повиноваться» в мощных полях излучения. Поэтому разведку вели люди, чаще всего с помощью здесь же усовершенствованных серийных дозиметров, лабораторных приборов, клинических дозиметров, различных накопителей дозы, теплометрических устройств.

Разведчикам удалось пройти, проползти, а чаще всего пробежать по многим помещениям блока и установить там постоянные контрольные приборы. Они, в частности, не увидели проплавлений и разрушений перекрытий на самых нижних этажах, а это означало, что «китайский синдром» там пока не проявился.

К июлю были измерены радиационные поля возле масс топлива, попавших через паровые коммуникации на нижние отметки здания. Вблизи них мощность дозы имела порядок 103-104 Р/ч.

В этой статье нет возможности рассказать о всех методах диагностических исследований, в том числе родившихся во время «мозговых штурмов» - чаепитий, в которых участвовали самые разные специалисты. Упомянем лишь о программе «Буй».

Собственно, сам «буй» - это диагностическое устройство в форме усеченного конуса, начиненное гамма-камерами, измерителями скорости и направления воздушного потока, датчиками температур и тепловых потоков. Каждый буй имел кабель длиной 250 м, свободный конец которого крепился к вертолету или крану «Демаг», доставлявших его в заданную точку. Аппаратура, обрабатывавшая сигналы от буев, размещалась в сохранившихся и относительно защищенных от радиации помещениях 4-го блока. Подготовка программы заняла около двух месяцев, размещение детекторов - 10 дней.

Установленные 15 буев (около 160 различных детекторов) давали, ценнейшую информацию о состоянии разрушенного реактора. Они действовали до конца сентября 1986 г., когда при строительных работах пришлось вывести из строя кабели связи с центральным пультом. Результаты этих измерений, в частности, показали, что радиационные поля и тепловые параметры разрушенного блока монотонно уменьшаются в соответствии с расчетами, т.е. опасные тенденции в поведении топлива отсутствуют.

Разрез разрушенного блока, построенный по результатам последних исследований. Бетон, попавший в блок при строительстве Саркофага, обозначен ненасыщенным цветом, содержащая топливо лава - насыщенным. Не показаны остатки каналов и графитовой кладки, лежащие слоем на плите «Основание реактора» (ОР), а также трубы, свисающие с верхней крышки реактора (Е).

План решительного наступления

К концу 1987 г. уже снова работали два блока ЧАЭС и оставались считанные дни до пуска третьего. Требовалось определить степень ядерной опасности топлива в Саркофаге. По нашим сведениям, топливо в Саркофаге находилось в разрушенном центральном зале и под каскадной стеной (часть выброшенного при взрыве), в специальном бассейне, где до аварии хранились отработанные ТВЭЛы, в шахте реактора (остатки активной зоны), в нижних помещениях блока, куда расплавленное топливо протекло в результате аварии.

Наибольшую ядерную опасность представляли остатки активной зоны в шахте реактора и скопления топлива в нижних этажах. Нужно было максимально приблизить к ним диагностические приборы, а при необходимости - ввести в топливо поглотители нейтронов. Поэтому решено было очистить и дезактивировать помещения с западной стороны Саркофага, установить в них бурильные станки и через бетонные стены, песчано-гравийную смесь и бак водяной защиты пробурить скважины как в шахту реактора, так и в подреакторные помещения. Это позволило бы с помощью перископов и телекамер осмотреть недоступные ранее помещения, определить степень их разрушения и места скопления топлива, а затем подвести к ним детекторы нейтронов, гамма-излучения или приборы теплового контроля.

Что происходит в Саркофаге

По мере проникновения к эпицентру аварии прояснялось истинное состояние разрушенного реактора. Модельные представления, использовавшиеся в 1986- 1987 гг., во многом не подтвердились.

Оказалось, что в шахте реактора сохранилась лишь малая часть фрагментов активной зоны, а верхняя крышка реактора весом более 2000 т наклонена под углом 15 ° к вертикали и опирается с одной стороны на край металлического бака, с другой - на лежащую на нем железобетонную плиту. С крышки свисает множество оторванных технологических труб. Нижняя крышка после взрыва опустилась на 4 м, смяв массивную крестообразную металлоконструкцию в подреакторном помещении, а примерно четверть ее полностью разрушена.

В основании реактора обнаружен завал из графитовых блоков, конструкционных элементов и «свежего» бетона, залившего и подреакторное помещение, куда попала значительная часть топлива. Расплавив песок, серпентинит, бетон и другие материалы, топливо образовало потоки, напоминающие лавовые, которые через паросбросные клапаны и трубы, кабельные каналы и иные отверстия проникли в парораспределительный коридор, бассейн-барботер, другие коридоры и помещения в нижней части блока. «Лава» застыла в виде множества сталагмитов и наплывов (наплывы с наибольшей активностью получили название «слоновья нога»). Химический состав лавы сильно варьируется, но в ней неизменно присутствует до 20% UO2 в виде частиц размером от единиц до сотен микрон.

В 1987 г. лава отличалась высокой прочностью, и, чтобы отколоть куски «слоновьей ноги», применяли стрелковое оружие. Теперь же она утратила твердость, стеклянный блеск и постепенно разрушается, превращаясь в топливную пыль - модификацию топлива, представляющую наибольшую радиационную опасность».

Источник

Прочитано 15864 разів

Підпишіться на новини будівництва:

 

 

Вибір редакції: